Sunday, 14 January 2018

الانحدار الحركة من المتوسط سلسلة


هناك عدد من النهج لنمذجة السلاسل الزمنية. نحن نوجز بعض من الأساليب الأكثر شيوعا أدناه. الاتجاه، الموسمية، التحلل المتبقي نهج واحد هو تحلل السلاسل الزمنية في اتجاه، الموسمية، والمكون المتبقي. والتجانس الأسي الثلاثي مثال على هذا النهج. مثال آخر، يسمى لووس الموسمية، يقوم على المربعات الصغرى المرجح محليا ويناقشها كليفلاند (1993). نحن لا نناقش اللوز الموسمية في هذا الدليل. الطرائق القائمة على التردد هناك طريقة أخرى، تستخدم عادة في التطبيقات العلمية والهندسية، وهي تحليل السلسلة في مجال التردد. ويرد مثال على هذا النهج في نمذجة مجموعة بيانات نوع جيبية في دراسة حالة انحراف الحزمة. المؤامرة الطيفية هي الأداة الأساسية لتحليل التردد من السلاسل الزمنية. نماذج الانحدار الذاتي (أر) إن الأسلوب المشترك لنمذجة السلاسل الزمنية المتغيرة أحادية المتغير هو نموذج الانحدار الذاتي (أر): xt دلتا phi1 X phi2 X كدوتس فيب X عندما تكون (شت) هي السلسلة الزمنية، تكون (أت) ضوضاء بيضاء ودلتا اليسار (1 - مجموع ص في الحق) مو. مع (مو) يدل على عملية يعني. نموذج الانحدار الذاتي هو ببساطة الانحدار الخطي للقيمة الحالية للسلسلة ضد واحد أو أكثر من القيم السابقة للسلسلة. وتسمى قيمة (p) ترتيب نموذج أر. نماذج أر يمكن تحليلها مع واحدة من الطرق المختلفة، بما في ذلك التقنيات الخطية المربعات الصغرى القياسية. لديهم أيضا تفسير مباشر. نماذج المتوسط ​​المتحرك (ما) هناك طريقة أخرى مشتركة لنمذجة نماذج السلاسل الزمنية المتغيرة أحادية المتغير وهي نموذج المتوسط ​​المتحرك: شت مو في - ثيتا A - ثيتا A - كدوتس - ثيتاق A، حيث (شت) هي السلسلة الزمنية (مو) ) هو متوسط ​​السلسلة، (A) هي عبارة عن ضوضاء بيضاء، و (theta1، و لدوتس، و ثيتاق) هي معلمات النموذج. وتسمى قيمة (q) ترتيب نموذج ما. أي أن نموذج المتوسط ​​المتحرك هو من الناحية المفاهيمية انحدار خطي للقيمة الحالية للسلسلة ضد الضوضاء البيضاء أو الصدمات العشوائية لقيمة أو أكثر من القيم السابقة للسلسلة. ويفترض أن الصدمات العشوائية في كل نقطة تأتي من نفس التوزيع، وهو عادة توزيع طبيعي، مع موقع في الصفر ومقياس ثابت. ويتمثل التمييز في هذا النموذج في أن هذه الصدمات العشوائية يتم نشرها على القيم المستقبلية للسلاسل الزمنية. تركيب تقديرات ما هو أكثر تعقيدا من مع نماذج أر لأن شروط الخطأ غير قابلة للرصد. وهذا يعني أن إجراءات التكرار غير الخطية المتكررة تحتاج إلى استخدامها بدلا من المربعات الصغرى الخطية. نماذج ما أيضا تفسير أقل وضوحا من نماذج أر. في بعض الأحیان یقترح أسف و باسف أن نموذج ما سیکون خیار نموذج أفضل وأحيانا ینبغي استخدام کل من المصطلحات أر و ما في نفس النموذج (انظر القسم 6.4.4.5). ومع ذلك، لاحظ أن عبارات الخطأ بعد ملاءمة النموذج يجب أن تكون مستقلة وتتبع الافتراضات القياسية لعملية أحادية المتغير. قام بوكس ​​وجينكينز بنشر نهج يجمع بين المتوسط ​​المتحرك ونهج الانحدار الذاتي في كتاب تحليل السلاسل الزمنية: التنبؤ والتحكم (بوكس، جينكينز، و راينزيل، 1994). وعلى الرغم من أن كلا من نهجي الانحدار الذاتي والمتوسط ​​المتحرك كانا معروفين بالفعل (وقد تم التحقيق فيهما في الأصل من قبل يول)، فإن مساهمة بوكس ​​وجينكينز كانت في وضع منهجية منهجية لتحديد وتقدير النماذج التي يمكن أن تتضمن كلا النهجين. وهذا يجعل نماذج بوكس ​​جينكينز فئة قوية من النماذج. سوف تناقش الأقسام التالية التالية هذه النماذج بالتفصيل. المعدل المتحرك المتغير أرما (p، q) نماذج لتحليل السلاسل الزمنية - الجزء 3 هذه هي الوظيفة الثالثة والأخيرة في السلسلة المصغرة على نماذج متوسط ​​الانحدار التلقائي (أرما) للوقت تحليل سلسلة. قدمنا ​​نماذج الانحدار الذاتي ونماذج المتوسط ​​المتحرك في المقالات السابقة. الآن حان الوقت للجمع بينهما لإنتاج نموذج أكثر تطورا. في نهاية المطاف هذا سوف يقودنا إلى نماذج أريما و غارتش التي من شأنها أن تسمح لنا للتنبؤ عائدات الأصول وتوقع التقلبات. وستشكل هذه النماذج أساس إشارات التداول وتقنيات إدارة المخاطر. إذا كنت قد قرأت الجزء 1 والجزء 2 كنت قد رأيت أننا نميل إلى اتباع نمط لتحليلنا من نموذج سلسلة زمنية. سوء تكرار ذلك باختصار هنا: المبررات - لماذا نحن مهتمون في هذا النموذج معين تعريف - تعريف رياضي للحد من الغموض. كوريلوغرام - رسم عينة الرسم البياني لتصور سلوك النماذج. المحاكاة والمناسب - تركيب نموذج للمحاكاة، من أجل ضمان فهمنا النموذج بشكل صحيح. البيانات المالية الحقيقية - تطبيق نموذج لأسعار الأصول التاريخية الحقيقية. التنبؤ - توقعات القيم اللاحقة لبناء إشارات التداول أو الفلاتر. من أجل متابعة هذه المقالة فإنه من المستحسن أن نلقي نظرة على المواد السابقة على تحليل السلاسل الزمنية. ويمكن العثور عليها جميعا هنا. معيار معلومات بايزي في الجزء 1 من هذه المقالة سلسلة نظرنا في معيار المعلومات أكايك (إيك) كوسيلة لمساعدتنا على الاختيار بين أفضل نماذج أفضل سلسلة زمنية. وهناك أداة وثيقة الصلة هي معيار معلومات بايزي (بيك). أساسا لها سلوك مماثل ل إيك في أنه يعاقب نماذج وجود الكثير من المعلمات. وهذا قد يؤدي إلى الإفراط في الإمداد. والفرق بين بيك و إيك هو أن بيك أكثر صرامة مع فرض عقوبات إضافية على المعلمات. معيار معلومات بايزي إذا أخذنا وظيفة الاحتمال لنموذج إحصائي، الذي يحتوي على معلمات k، و L يزيد من احتمال. ثم يعطى معيار معلومات بايزي من قبل: حيث n هو عدد نقاط البيانات في السلاسل الزمنية. سنستخدم إيك و بيك أدناه عند اختيار نماذج أرما المناسبة (p، q). لتجونغ بوكس ​​بوكس ​​في الجزء 1 من هذه المقالة سلسلة راجان المذكورة في تعليقات ديسكوس أن اختبار لجونغ بوكس ​​كان أكثر ملاءمة من استخدام معيار المعلومات أكايك لمعيار المعلومات بايزي في تقرير ما إذا كان نموذج أرما كان مناسبا لوقت سلسلة. اختبار يجونغ بوكس ​​هو اختبار الفرضية الكلاسيكية التي تم تصميمها لاختبار ما إذا كانت مجموعة من أوتوكوريلاتيونس من نموذج سلسلة زمنية مجهزة تختلف اختلافا كبيرا عن الصفر. الاختبار لا يختبر كل تأخر الفردية عن العشوائية، وإنما اختبار العشوائية على مجموعة من التأخر. يجونغ-بوكس تيست نحدد الفرضية الفارغة على النحو التالي: إن بيانات السلاسل الزمنية عند كل تأخر هي i. i.d .. أي أن الارتباطات بين قيم السلسلة السكانية هي صفر. نحدد الفرضية البديلة على النحو التالي: إن بيانات السلاسل الزمنية ليست i. i.d. وتمتلك ارتباطا مسلسليا. نحسب إحصائية الاختبار التالية. س: حيث n هو طول عينة السلاسل الزمنية، فإن القبعة k هي الترابط الذاتي للعينة عند التأخر k و h هو عدد التأخيرات تحت الاختبار. وقاعدة القرار فيما يتعلق برفض الفرضية الصفرية هي التحقق مما إذا كانت Q غ تشي ch2، لتوزيع مربعات تشي مع h درجة من الحرية عند 100 (1 ألفا) من النسبة المئوية. في حين أن تفاصيل الاختبار قد تبدو معقدة قليلا، يمكننا في الواقع استخدام R لحساب الاختبار بالنسبة لنا، وتبسيط الإجراء إلى حد ما. المتوسط ​​المتحرك المتحرك التلقائي (أرما) نماذج النظام p، q الآن بعد أن ناقشنا اختبار بيك واختبار بوكس، كنا مستعدين لمناقشة نموذجنا المختلط الأول، وهو المتوسط ​​المتحرك للانحدار الذاتي للترتيب p أو q أو أرما (p، ف). وقد نظرنا حتى الآن في عمليات الانحدار الذاتي والمتوسط ​​المتحرك. ويعتبر النموذج السابق سلوكه السابق كمدخلات للنموذج، وبهذه المحاولات للقبض على آثار المشاركين في السوق، مثل الزخم ومتوسط ​​الانتعاش في تداول الأسهم. يستخدم هذا النموذج الأخير لتوصيف معلومات الصدمة لسلسلة، مثل إعلان مفاجئ للأرباح أو حدث غير متوقع (مثل انسكاب النفط بب ديبواتر هوريزون). وبالتالي، يحاول نموذج أرما التقاط كل من هذه الجوانب عند نمذجة السلاسل الزمنية المالية. لاحظ أن نموذج أرما لا يأخذ في الاعتبار تجميع التقلبات، وهو ظواهر تجريبية رئيسية للعديد من السلاسل الزمنية المالية. وهي ليست نموذجا غير متجانسة مشروطا. لذلك سنحتاج إلى الانتظار لنماذج أرش و غارتش. تعريف نموذج أرما (p، q) هو مزيج خطي من نموذجين خطيين، وبالتالي فهو في حد ذاته لا يزال خطي: ​​الانحدار الذاتي المتوسط ​​المتحرك نموذج النظام p، q نموذج السلاسل الزمنية، هو نموذج الانحدار الذاتي الانحداري للنظام p، q . أرما (p، q)، إف: ستارت alpha1 x alpha2 x لدوتس وت beta1 w beta2 w لدوتس بيتاق w إند حيث الضوضاء البيضاء مع E (وت) 0 والتباين sigma2. إذا نظرنا إلى مشغل التحول المتخلف. (انظر مقال سابق) ثم يمكننا إعادة كتابة أعلاه كدالة ثيتا و فاي من: يمكننا أن نرى بشكل مباشر أنه من خلال وضع p نيق 0 و q0 نحن استعادة أر (p) نموذج. وبالمثل إذا وضعنا p 0 و q نيق 0 نحن استرداد ما (q) نموذج. واحدة من السمات الرئيسية للنموذج أرما هو أنه شاذ ومزدوج في معلماته. وهذا يعني أن نموذج أرما غالبا ما يتطلب معلمات أقل من نموذج أر (p) أو ما (q) وحده. بالإضافة إلى ذلك إذا أعدنا كتابة المعادلة من حيث بسو، فإن ثيتا و فيي متعددة الحدود يمكن أن تشترك في بعض الأحيان عامل مشترك، مما يؤدي إلى نموذج أبسط. المحاكاة و كوريلوغرامز كما هو الحال مع نماذج الانحدار الذاتي والمتوسط ​​المتحرك سنقوم الآن بمحاكاة مختلف سلسلة أرما ثم محاولة لتناسب نماذج أرما لهذه الإنجازات. نقوم بتنفيذ ذلك لأننا نريد أن نضمن أن نفهم الإجراء المناسب، بما في ذلك كيفية حساب فترات الثقة للنماذج، وكذلك التأكد من أن الإجراء فعلا استعادة تقديرات معقولة للمعلمات أرما الأصلية. في الجزء 1 والجزء 2 قمنا ببناء سلسلة أر و ما يدويا من خلال رسم N عينات من التوزيع الطبيعي ومن ثم صياغة نموذج سلسلة زمنية محددة باستخدام فترات تأخر هذه العينات. ومع ذلك، هناك طريقة أكثر مباشرة لمحاكاة أر، ما، أرما وحتى البيانات أريما، وذلك ببساطة عن طريق استخدام طريقة arima. sim في R. دعونا تبدأ مع أبسط نموذج أرما غير تافهة ممكن، وهي أرما (1،1 ) نموذج. وهذا هو، نموذج الانحدار الذاتي للنظام واحد جنبا إلى جنب مع نموذج المتوسط ​​المتحرك للنظام واحد. مثل هذا النموذج له معاملين فقط، ألفا وبيتا، والتي تمثل الفواصل الأولى من السلسلة الزمنية نفسها وشروط الضوضاء البيضاء الصدمة. ويعطى هذا النموذج من قبل: نحن بحاجة إلى تحديد المعاملات قبل المحاكاة. يتيح أخذ ألفا 0.5 وبيتا -0.5: الإخراج هو كما يلي: يتيح أيضا رسم الرسم البياني: يمكننا أن نرى أنه لا يوجد ارتباط ذاتي كبير، والذي هو متوقع من نموذج أرما (1،1). وأخيرا، يتيح محاولة تحديد المعاملات والأخطاء القياسية باستخدام الدالة أريما: يمكننا حساب فترات الثقة لكل معلمة باستخدام الأخطاء القياسية: فترات الثقة لا تحتوي على قيم المعلمة الحقيقية لكلا الحالتين، ولكن يجب أن نلاحظ أن 95 فواصل الثقة واسعة جدا (نتيجة للأخطاء المعيارية الكبيرة المعقولة). يتيح الآن محاولة أرما (2،2) نموذج. وهذا هو، أر (2) نموذج جنبا إلى جنب مع ما (2) نموذج. نحن بحاجة إلى تحديد أربع معلمات لهذا النموذج: alpha1، ألفا 2، beta1 و beta2. دعونا تأخذ alpha1 0.5، alpha2-0.25 beta10.5 و beta2-0.3: إخراج أرما لدينا (2،2) نموذج على النحو التالي: و أوتوكوريلاتيون المقابلة: يمكننا الآن محاولة تركيب أرما (2،2) نموذج إلى البيانات: يمكننا أيضا حساب فترات الثقة لكل معلمة: لاحظ أن فترات الثقة لمعاملات العنصر المتوسط ​​المتحرك (beta1 و beta2) لا تحتوي في الواقع على قيمة المعلمة الأصلية. ويوضح ذلك خطورة محاولة وضع النماذج على البيانات، حتى عندما نعرف قيم المعلمة الحقيقية ومع ذلك، فإننا نحتاج فقط لأغراض تجارية إلى أن تكون لها قدرة تنبؤية تتجاوز فرصة الإنتاج وتنتج ربحا كافيا فوق تكاليف المعاملات، لكي تكون مربحة في على المدى الطويل. الآن بعد أن رأينا بعض الأمثلة على نماذج أرما محاكاة نحن بحاجة إلى آلية لاختيار قيم p و q عند المناسب للنماذج إلى البيانات المالية الحقيقية. اختيار أفضل نموذج أرما (p، q) من أجل تحديد الترتيب p، q من نموذج أرما مناسب لسلسلة، نحتاج إلى استخدام إيك (أو بيك) عبر مجموعة فرعية من القيم p و q و ثم تطبيق اختبار لجونغ بوكس ​​لتحديد ما إذا كان قد تم تحقيق تناسب جيد، لقيم معينة من p، س. لإظهار هذه الطريقة سنقوم أولا بمحاكاة عملية أرما (p، q) معينة. سنقوم ثم حلقة على جميع القيم الزوجية p في و q في وحساب إيك. وسوف نختار النموذج مع أدنى إيك ثم قم بتشغيل اختبار لجونغ بوكس ​​على البقايا لتحديد ما إذا كنا قد حقق مناسبا. دعونا نبدأ من خلال محاكاة سلسلة أرما (3،2): سنقوم الآن بإنشاء كائن النهائي لتخزين أفضل نموذج تناسب وأدنى قيمة إيك. نحن حلقة على مختلف p، مجموعات q واستخدام الكائن الحالي لتخزين تناسب نموذج أرما (ط، ي)، لمتغيرات حلقة ط و j. إذا كان إيك الحالي أقل من أي إيك المحسوبة سابقا قمنا بتعيين إيك النهائي لهذه القيمة الحالية وحدد هذا الطلب. عند إنهاء حلقة لدينا ترتيب نموذج أرما المخزنة في final. order و أريما (p، د، ف) تناسب نفسها (مع مجموعة مكون المتكاملة ل 0) المخزنة كما نهائي.: لا يتيح إخراج إيك ، والنظام ومعاملات أريما: يمكننا أن نرى أن النظام الأصلي من نموذج أرما محاكاة تم استردادها، وهي P3 و Q2. يمكننا رسم مخطط المخلفات من نموذج لمعرفة ما إذا كانت تبدو وكأنها تحقيق الضوضاء البيضاء منفصلة (دون): و كوريلوغرام تبدو فعلا مثل تحقيق دون. وأخيرا، نحن إجراء اختبار يجونغ بوكس ​​لمدة 20 تأخر لتأكيد هذا: لاحظ أن قيمة P أكبر من 0.05، التي تنص على أن المخلفات مستقلة على مستوى 95 وبالتالي أرما (3،2) نموذج يوفر نموذج جيد صالح. ومن الواضح أنه يجب أن يكون هذا هو الحال منذ أن تم محاكاة البيانات أنفسنا ومع ذلك، هذا هو بالضبط الإجراء الذي سوف نستخدم عندما نأتي لتناسب أرما (ص، ف) نماذج إلى مؤشر SampP500 في القسم التالي. البيانات المالية الآن بعد أن حددنا الإجراء لاختيار نموذج السلسلة الزمنية المثلى لسلسلة محاكاة، فمن السهل إلى حد ما لتطبيقه على البيانات المالية. لهذا المثال سوف نختار مرة أخرى مؤشر الأسهم الأمريكية SampP500. يتيح تحميل أسعار الإغلاق اليومية باستخدام كوانتمود ثم إنشاء سجل عوائد تيار: يتيح تنفيذ الإجراء المناسب نفسه كما في محاكاة أرما (3،2) سلسلة أعلاه على سجل يعود سلسلة من SampP500 باستخدام إيك: أفضل نموذج المناسب لديه أمر أرما (3،3): يتيح مؤامرة بقايا النموذج المجهزة ل SampP500 سجل تيار العوائد اليومية: لاحظ أن هناك بعض قمم كبيرة، وخاصة في فترات تأخر أعلى. وهذا يدل على سوء صالح. دعونا إجراء اختبار لجونغ بوكس ​​لمعرفة ما إذا كان لدينا أدلة إحصائية لهذا: كما نشتبه، قيمة P أقل من 0.05 وعلى هذا النحو لا يمكننا أن نقول أن بقايا هي تحقيق الضوضاء البيضاء منفصلة. وبالتالي هناك علاقة ذاتية إضافية في المخلفات التي لم يتم تفسيرها من قبل أرما المجهزة نموذج (3،3). الخطوات التالية كما ناقشنا على طول في هذه المقالة سلسلة شهدنا أدلة على التغايرية المشروط (تجميد التقلب) في سلسلة SampP500، وخاصة في الفترات 2007-2007. عندما نستخدم نموذج غارتش في وقت لاحق في سلسلة المقال سوف نرى كيفية القضاء على هذه أوتوكوريلاتيونس. في الممارسة العملية، نماذج أرما هي عادة لا يناسب بشكل جيد لعائدات الأسهم سجل. نحن بحاجة إلى أن نأخذ بعين الاعتبار عدم التفاوت المشروط واستخدام مزيج من أريما و غارتش. ستنظر المقالة التالية أريما وتبين كيف يختلف المكون المتكامل عن نموذج أرما الذي كنا ننظر فيه في هذه المقالة. مجرد البدء في التداول الكمي .8.3 نماذج الانحدار الذاتي في نموذج الانحدار المتعدد، نتوقع متغير الفائدة باستخدام مزيج خطي من التنبؤات. في نموذج الانحدار الذاتي، نتوقع متغير الفائدة باستخدام مزيج خطي من القيم السابقة للمتغير. يشير مصطلح الانحدار التلقائي إلى أنه انحدار للمتغير ضد نفسه. وهكذا يمكن كتابة نموذج الانحدار الذاتي للنظام p حيث حيث c هو ثابت وآخر هو الضوضاء البيضاء. هذا هو مثل الانحدار المتعدد ولكن مع قيم متخلفة من يت كما التنبؤات. نشير إلى هذا كنموذج أر (p). نماذج الانحدار الذاتي مرنة بشكل ملحوظ في التعامل مع مجموعة واسعة من أنماط سلسلة زمنية مختلفة. تظهر السلسلتان في الشكل 8.5 سلسلة من نموذج أر (1) ونموذج أر (2). تغيير المعلمات phi1، النقاط، النتائج فيب في أنماط سلسلة زمنية مختلفة. التباين في مصطلح الخطأ وسوف تغير فقط حجم السلسلة، وليس الأنماط. الشكل 8.5: مثالان للبيانات من نماذج الانحدار الذاتي بمعلمات مختلفة. يسار: أر (1) ويث يت 18 -0.8y إت. رايت: أر (2) ويث يت 8 1.3y -0.7y إت. وفي كلتا الحالتين، توزع إت عادة الضوضاء البيضاء مع متوسط ​​الصفر والتباين واحد. بالنسبة إلى نموذج أر (1): عندما تكون phi10، تعادل الضوضاء البيضاء. عندما phi11 و c0، يت ما يعادل المشي العشوائي. عندما phi11 و cne0، يت تعادل المشي عشوائي مع الانجراف عندما phi1lt0، يتيميل إلى التذبذب بين القيم الإيجابية والسلبية. ونحن عادة ما نقيد نماذج الانحدار الذاتي إلى البيانات الثابتة، ومن ثم بعض القيود على قيم المعلمات المطلوبة. بالنسبة لنموذج أر (1): -1 لوت phi1 لوت 1. بالنسبة لنموذج أر (2): -1 لوت phi2 لوت 1، phi1phi2 لوت 1، phi2-phi1 لوت 1. عندما تكون pge3 القيود أكثر تعقيدا بكثير. R) (. 2-1 النماذج المتوسطة المتحركة) نماذج ما (يمكن أن تشمل نماذج السلاسل الزمنية المعروفة باسم نماذج أريما مصطلحات الانحدار الذاتي ومتوسط ​​المتوسط ​​المتحرك. في الأسبوع الأول، تعلمنا مصطلح الانحدار الذاتي في نموذج سلسلة زمنية للمتغير x t قيمة متخلفة من x t. على سبيل المثال، مصطلح الانحدار الذاتي 1 تأخر هو x t-1 (مضروبا في معامل). يحدد هذا الدرس مصطلحات المتوسط ​​المتحرك. متوسط ​​المتوسط ​​المتحرك في نموذج السلاسل الزمنية هو خطأ سابق (مضروبا في معامل). واسمحوا (W أوفيرزيت N (0، sigma2w))، بمعنى أن w t هي متطابقة، موزعة بشكل مستقل، ولكل منها توزيع طبيعي يعني 0 و نفس التباين. (1) هو (شت مو وت theta1w) نموذج المتوسط ​​المتحرك الثاني، الذي يشير إليه ما (2) هو (شت مو wtta1w theta2w) ، التي يرمز إليها ما (q) هو (شت مو وت theta1w ثيتاو w النقاط ثيتاكو) ملاحظة. العديد من الكتب المدرسية والبرامج البرمجية تحدد النموذج مع علامات سلبية قبل الشروط. هذا لا يغير الخصائص النظرية العامة للنموذج، على الرغم من أنه لا يقلب علامات جبري لقيم معامل المقدرة و (غير مسقوفة) المصطلحات في صيغ ل أكفس والتباينات. تحتاج إلى التحقق من البرنامج للتحقق مما إذا كانت العلامات السلبية أو الإيجابية قد استخدمت من أجل كتابة النموذج المقدر بشكل صحيح. يستخدم R إشارات إيجابية في نموذجه الأساسي، كما نفعل هنا. الخصائص النظرية لسلسلة زمنية مع ما (1) نموذج لاحظ أن القيمة غير صفرية الوحيدة في أسف النظري هو تأخر 1. جميع أوتوكوريلاتيونس الأخرى هي 0. وبالتالي عينة أسف مع ارتباط ذاتي كبير فقط في تأخر 1 هو مؤشر لنموذج ما (1) ممكن. للطلاب المهتمين، والبراهين من هذه الخصائص هي ملحق لهذه النشرة. مثال 1 افترض أن نموذج ما (1) هو x t 10 w t .7 w t-1. حيث (الوزن الزائد N (0،1)). وبالتالي فإن معامل 1 0.7. وتعطى أسف النظرية من قبل مؤامرة من هذا أسف يتبع. المؤامرة فقط أظهرت هو أسف النظري ل ما (1) مع 1 0.7. ومن الناحية العملية، لن توفر العينة عادة مثل هذا النمط الواضح. باستخدام R، قمنا بمحاكاة n 100 قيم عينة باستخدام النموذج x t 10 w t .7 w t-1 حيث w t إيد N (0،1). لهذه المحاكاة، وتتبع مؤامرة سلسلة زمنية من بيانات العينة. لا يمكننا أن نقول الكثير من هذه المؤامرة. وتأتي العينة أسف للبيانات المحاكاة. ونحن نرى ارتفاع في التأخر 1 تليها عموما القيم غير الهامة للتخلف الماضي 1. لاحظ أن العينة أسف لا يطابق النمط النظري لل ما الأساسية (1)، وهو أن جميع أوتوكوريلاتيونس للتخلف الماضي 1 سيكون 0.ويمكن أن يكون لعينة مختلفة عينة أسف مختلفة قليلا مبينة أدناه، ولكن من المرجح أن يكون لها نفس السمات العامة. الخصائص النظرية لسلسلة زمنية مع نموذج ما (2) بالنسبة للنموذج ما (2)، تكون الخصائص النظرية كما يلي: لاحظ أن القيم غير الصفرية الوحيدة في أسف النظرية هي للتخلف 1 و 2. أوتوكوريلاتيونس للتخلف العالي هي 0 لذلك، فإن عينة أسف مع أوتوكوريلاتيونس كبيرة في التأخر 1 و 2، ولكن أوتوكوريلاتيونس غير هامة لفترات أعلى يشير إلى احتمال ما (2) نموذج. إيد N (0،1). المعاملات هي 1 0.5 و 2 0.3. لأن هذا هو ما (2)، فإن أسف النظرية لها قيم غير صفرية فقط في التأخر 1 و 2. قيم أوتوكوريلاتيونس غير نازيرو هي مؤامرة من أسف النظري يتبع. وكما هو الحال دائما تقريبا، فإن بيانات العينة لن تتصرف تماما تماما كما النظرية. قمنا بمحاكاة n 150 قيم عينة للنموذج x t 10 w t .5 w t-1 .3 w t-2. حيث w t إيد N (0،1). وتأتي سلسلة المسلسلات الزمنية للبيانات. كما هو الحال مع مؤامرة سلسلة زمنية ل ما (1) عينة البيانات، لا يمكن أن أقول الكثير من ذلك. وتأتي العينة أسف للبيانات المحاكاة. النمط هو نموذجي في الحالات التي قد يكون نموذج ما (2) مفيدة. هناك اثنين من ارتفاع كبير إحصائيا في التأخر 1 و 2 تليها القيم غير الهامة للتخلف الأخرى. لاحظ أنه نظرا لخطأ أخذ العينات، فإن عينة أسف لا تتطابق مع النمط النظري بالضبط. أسف للجنرال ما (q) النماذج A خاصية نماذج ما (q) بشكل عام هو أن هناك أوتوكوريلاتيونس غير الصفرية للفواصل q الأولى و أوتوكوريلاتيونس 0 لجميع التأخر غ س. عدم تفرد الاتصال بين قيم 1 و (rho1) في ما (1) نموذج. في نموذج ما (1)، لأي قيمة 1. فإن المعاملة 1 المتبادلة تعطي نفس القيمة كمثال، تستخدم 0.5 ل 1. ثم استخدم 1 (0.5) 2 ل 1. تحصل على (rho1) 0.4 في كلتا الحالتين. لتلبية التقييد النظري يسمى العكوسة. فإننا نقيد نماذج ما (1) التي لها قيم ذات قيمة مطلقة أقل من 1. وفي المثال الذي أعطيت للتو، ستكون قيمة 0،5 قيمة معلمة مسموح بها، بينما لن تكون 1 10،5 2. قابلية نماذج ما يقال إن نموذج ما قابل للانعكاس إذا كان معادلا جبريا لنموذج أر غير محدود. من خلال التقارب، ونحن نعني أن معاملات أر تنخفض إلى 0 ونحن نعود إلى الوراء في الوقت المناسب. القابلية للانعكاس هي قيود مبرمجة في برامج السلاسل الزمنية المستخدمة لتقدير معاملات النماذج بشروط ما. انها ليست شيئا أننا تحقق في في تحليل البيانات. يتم إعطاء معلومات إضافية حول تقييد إنفرتيبيليتي ل ما (1) نماذج في الملحق. نظرية النظرية المتقدمة. وبالنسبة لنموذج ما (q) مع أسف محدد، لا يوجد سوى نموذج واحد قابل للانعكاس. والشرط الضروري للعكس هو أن للمعاملات قيم مثل المعادلة 1- 1 y-. - q y q 0 لديها حلول ل y التي تقع خارج دائرة الوحدة. رمز R للأمثلة في المثال 1، قمنا بتخطيط أسف النظري للنموذج x t 10 w t. 7w t-1. ومن ثم محاكاة n 150 قيم من هذا النموذج ورسم التسلسل الزمني للعينة و أسف العينة للبيانات المحاكية. وكانت الأوامر R المستخدمة في رسم أسف النظرية: acfma1ARMAacf (ماك (0.7)، lag. max10) 10 تأخر من أسف ل ما (1) مع thta1 0.7 متخلفة 0: 10 يخلق متغير اسمه التأخر التي تتراوح من 0 إلى 10. مؤامرة (1)، و xlemc1 (1، 10)، ييلبر، تيله، أسف الرئيسي ل ما (1) مع theta1 0.7) أبلين (h0) يضيف محور أفقي إلى المؤامرة يحدد الأمر الأول أسف ويخزن في كائن اسمه acfma1 (اختيارنا من الاسم). تتخطى مؤامرات الأمر المؤامرة (الأمر الثالث) مقابل قيم أكف للتخلف من 1 إلى 10. تسمي معلمة يلب المحور الصادي وتضع المعلمة الرئيسية عنوانا على المؤامرة. لمعرفة القيم العددية لل أسف ببساطة استخدام acfma1 الأمر. وقد أجريت المحاكاة والمؤامرات مع الأوامر التالية. xcarima. sim (n150، قائمة (ماك (0.7))) يحاكي n 150 القيم من ما (1) xxc10 يضيف 10 لجعل المتوسط ​​10. الافتراضية الافتراضية المحاكاة يعني 0. مؤامرة (x، تايب، مينسيمولاتد ما (1) البيانات) أسف (x، زليمك (1،10)، ميناكف لبيانات العينة المحاكاة) في المثال 2، قمنا بتخطيط أكف النظري للنموذج شت 10 w .5 w t-1 .3 w t-2. ومن ثم محاكاة n 150 قيم من هذا النموذج ورسم التسلسل الزمني للعينة و أسف العينة للبيانات المحاكية. كانت الأوامر R المستخدمة acfma2ARMAacf (ماك (0.5،0.3)، lag. max10) acfma2 متخلفة 0: 10 مؤامرة (تأخر، acfma2، زليمك (1،10)، يلابر، تيبه، أسف الرئيسي ل ما (2) مع ثيتا 0.5، (h0) xcarima. sim (n150، قائمة (ماك (0.5، 0.3))) xxc10 مؤامرة (x، تيب، الرئيسية مقلد ما (2) سلسلة أسف (x، زليمك (1،10) ميناكف لمحاكاة ما (2) البيانات) الملحق: دليل على خصائص ما (1) للطلاب المهتمين، وهنا هي البراهين للخصائص النظرية للنموذج ما (1). الفرق: النص (شت) النص (wt theta1 w) 0 النص (وت) النص (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) عندما h 1، التعبير السابق 1 ث 2. لأي h 2، التعبير السابق 0 والسبب هو أنه، بحكم تعريف استقلالها. E (w w w j) 0 لأي k j. علاوة على ذلك، لأن w w t يعني 0، E (w j w j) E (w j 2) w 2. لسلسلة زمنية، تطبيق هذه النتيجة للحصول على أسف المذكورة أعلاه. نموذج ما لا يمكن عكسه هو واحد التي يمكن أن تكون مكتوبة كنموذج لانهائية أجل أر التي تتقارب بحيث معاملات أر تتلاقى إلى 0 ونحن نتحرك بلا حدود مرة أخرى في الوقت المناسب. تثبت جيدا إنفرتيبيليتي ل ما (1) نموذج. ثم نستبدل العلاقة (2) ل w t-1 في المعادلة (1) (3) (زت وت theta1 (z - theta1w) wttata1z - theta2w) في الوقت t-2. المعادلة (2) يصبح نحن ثم بديلا العلاقة (4) ل w t-2 في المعادلة (3) (زت وت ثيتا z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) إذا كان علينا أن نواصل ( (زت وت theta1 z - theta21z thta31z - theta41z النقاط) لاحظ مع ذلك أنه إذا كان 1 1، فإن المعاملات ضرب ضرب من z زيادة (بلا حدود) في الحجم ونحن نعود إلى الوراء في زمن. ولمنع ذلك، نحتاج إلى 1 لتر 1. هذا هو شرط لنموذج ما (1) قابل للانعكاس. لانهائية النظام ما نموذج في الأسبوع 3، نرى جيدا أن أر (1) نموذج يمكن تحويلها إلى أمر لانهائي ما نموذج: (شت - mu وت phi1w نقاط phi21w phik1 ث النقاط مجموع phij1w) هذا الجمع من الماضي شروط الضوضاء البيضاء هو معروف كما التمثيل السببي لل أر (1). وبعبارة أخرى، x t هو نوع خاص من ما مع عدد لا حصر له من المصطلحات تعود في الوقت المناسب. وهذا ما يسمى أمر لا حصر له ما أو ما (). أمر محدود ما هو أمر لانهائي أر وأي أمر محدود أر هو أمر لانهائي ما. أذكر في الأسبوع 1، لاحظنا أن شرط ل أر ثابتة (1) هو أن 1 lt1. يتيح حساب فار (x t) باستخدام التمثيل السببي. هذه الخطوة الأخيرة تستخدم حقيقة أساسية حول السلسلة الهندسية التي تتطلب (phi1lt1) وإلا فإن السلسلة تتباعد. التنقل

No comments:

Post a Comment